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Abstract—We present a proof-of-concept pipeline for automat-
ing the placement of Mechanical, Electrical, and Plumbing (MEP)
components in 3D building designs. Rather than relying on
entirely manual efforts, our approach merges context-driven
neural networks to reduce modeling time.

Our pipeline begins by extracting and organizing data from
Autodesk Revit exports, dividing each building model into *units”
and linking each unit to a JSON file (component data) and an
.0bj mesh. The unit data, including adjacency relationships, is
then normalized and embedded into vectors suited for neural
network processing.

Our method consists of two neural network types: A type
predictor that selects which component to place, followed by a
location predictor that provides with the exact xyz coordinates.
These neural networks are enhanced by Convolutional neural
networks (CNNs), and further guided by a ”context window” of
surrounding units. Alongside, we have incorporated an expert
system.

Experimental evaluations across multiple building datasets
indicate that context-informed CNNs achieve consistently lower
placement errors. Meanwhile, the expert system, though less
precise, remains transparent and provides a baseline for inter-
pretable predictions. Altogether, this proof-of-concept demon-
strates how automated MEP placement can help address an
industry-wide need for speed, accuracy, and cost-effectiveness
in modern construction workflows.
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I. INTRODUCTION

The global construction industry is increasingly adopting
modular building techniques, where structures are assembled
from small prefabricated units built in large factories. This



trend is driven by the need for faster construction times and
cost-effective buildings, especially in high-demand markets
like the Netherlands, where there is a housing shortage. (Dita
Hotinkov4, 2021) These modular buildings, designed for 10-
25 years of use, are quick to construct but present a lot
of pre-construction work, particularly in terms of integrating
Mechanical, Electrical, and Plumbing (MEP) components to
the building, which are essential for making the buildings
operational. (Kazeem KO, 2024)

For modern buildings manual modeling and MEP coor-
dination can consume over 50% of the project resources.
(Teo, 2022) That’s because the traditional process of adding
MEP components to a building model is manual, labor-
intensive, and time-consuming, (Kazeem KO, 2024) which
adds to project costs and delays. This problem is especially
significant when dealing with modular buildings, where MEP
systems must be customized and coordinated across many
small, interconnected units, although the units are very similar.

Given the rising demand for more efficient construction
methods, automation of these processes becomes essential.
Current Building Information Modeling (BIM) systems like
Autodesk Revit allow for efficient modeling, but they still rely
heavily on manual inputs for MEP components. The challenge
lies in developing tools that can autonomously generate MEP
models, reducing human error, and improving time efficiency
while maintaining compliance with engineering standards and
norms.

In this project, in collaboration with Equans, our aim is
to develop an Al system capable of autonomously generating
a 3D MEP model from an architectural BIM model. By
automating the MEP design process, the system will not
only enhance the speed of the design process but will also
help address the shortage of skilled 3D modelers. This could
potentially reduce MEP design times, leading to significant
cost savings and faster project completion times.

We are doing that by answering two research questions.

o How does the performance of the rule-based expert
system compare with the Al-driven approach for
component location prediction?

« What are the challenges and limitations in implement-
ing Al-driven generation systems for MEP compo-
nents?

II. APPROACH
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Fig. 1. Revit Data Extraction Pipeline

The first step in our approach to automating the placement
of MEP components is extracting project data from Revit, a
widely used BIM software. This process begins with a manual

export, where the currently active view in Revit is saved as an
.obj file. This is later used in a custom program designed to
process the exported data and extract all necessary information
for both training and applying our Al solution. This method
ensures that we capture every placed component, along with
the detailed structure of the building.

Following this stage, we filter out the components in order
to obtain the components of desired properties (e.g. electrical
components) and proceed to group the components that always
appear together into new composite components, facilitating
easier data processing and analysis.

Once extracted, the data is organized by dividing the project
into individual units. Each unit is then represented by two
files, which serve as inputs for our program. The first is
a JSON file that contains detailed information about the
unit: the placement and relative positions of its components,
connections to adjacent units via their IDs, as well as the
position of the unit relative to the whole building.

The second is a new .obj file that provides the unit’s mesh
with all components removed, offering a clear representation
of the architectural geometry.
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Fig. 2. Neural Network Model Pipeline

The exported files undergo further processing to prepare
them for use in our system. The .obj file is converted into
a three-dimensional tensor of points, which is then sampled
randomly with probabilities weighted by the size of the faces
from which the points are sampled. To achieve this we leverage
the capabilities of the PyTorch3D library ((Ravi et al., 2020)).

Simultaneously, the JSON file is parsed and transformed
into an instance of a Python unit class. This custom class
organizes and structures all the unit’s data in a clear and easily-
accessible manner and implements methods allowing for easy
data normalization.
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Fig. 3. Component-by-Component MEP component generation within a unit
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Fig. 4. unit-by-unit MEP component generation with a context window

Using the neural networks developed in PyTorch ((Paszke et
al., 2019)) to generate components, first the data is retrieved,
normalized and embedded. Then we adopt an iterative unit-
by-unit, component-by-component approach inspired by the
transformers ((Singh & Mahmood, 2021)) and LLMs, such as
chatGPT.

We incorporate information from surrounding units using a
context window. This context ensures that the placement and
arrangement of components in a given unit maintain logical
consistency and align with the broader spatial and functional
structure of the building.

To enhance usability of our solution, we developed a
straightforward graphical user interface (GUI) using Python
libraries. This GUI simplifies the process of preparing data for
our Al system by providing an intuitive, user-friendly interface
for handling Revit project exports instead of compiling the
code by hand. With this tool, users can upload a .obj file
representing a Revit project directly into the application,
and then all further steps within the described pipeline are
processed automatically, allowing the user to proceed directly
to the component generation step.

The GUI also offers a preview functionality to ensure that
users can verify their selections and the processed output.
This visualization is displayed as an interactive 3D image,
allowing users to explore the building’s structure and layout
in real-time. The interactive visualization not only provides
a clear depiction of the processed data but also acts as a
validation tool to ensure accuracy before proceeding to the
next steps in the pipeline. Once all specifications for each unit
are confirmed, the user can export a .obj file representing the
generated components.

By integrating these features, the GUI bridges the gap

between the technical aspects of data preparation and the
practical needs of end-users. It reduces the complexity of man-
aging exports and component selection, offering a seamless
and efficient way to handle Revit project data while ensuring
a clear and interactive way to visualize results.
This comprehensive pipeline, combining Revit data extraction,
iterative context-aware generation, enables a robust and intelli-
gent system for unit-based component generation and building
design analysis.

III. IMPLEMENTATION

A. Revit data extraction implementation

The Revit program contains an add-on software called
PyRevit. With this, users are capable of running their own
Python scripts within Revit. However, this comes with some

limitations. The Python version within Revit is a simpler
version; it is unable to run a script containing other libraries,
such as Pandas or Numpy. Also, running the script took
significantly longer than within a standard IDE. So we opted
to implement software extraction completely separately from
Revit, using manually extracted object files from Revit as
input.

The object files that are extracted from Revit have the
following variables:

1) usemtl, this represents the material file that is used, in a
material file the color and shade of an object is stored

2) g, this represented the name of the group of vertices and
faces that represent one object in a mesh

3) v, this contains all the standard coordination vertices,
represented with X,Y,Z coordinates

4) vn, this stands for normal vectors, these are used to add
lightning and shading to an 3D object

5) vt this stands for texture vectors, these are used todefine
2D coordinates for mapping textures on the 3D objects

6) f, this contains the faces. Faces are a triple of coordinates
that make a small triangle, combining all of the faces
will result in one 3D object.

Since for this project, the only thing of interest is the
locational data, which makes the shade, lightning and the
texture of the objects are unnecessary. Storing the material
file, normal vertices and texture vertices is thus redundant.
So when the object file is read for the first time, the program
makes sure to delete all of these instances, drastically reducing
the amount of data that needs to be stored.

When the object file of the building is being read, while
the unnecessary information as just described gets removed,
the rest is immediately sorted into respective groups. Not every
object in building-mesh needs to be processed by the software.
Walls, floors and ceilings are the only things that matter when
placing MEP components.

The software has a set of keywords that will filter out the
unwanted objects. So the needed objects are accepted, and
a dictionary is made to store the objects name, vertices and
faces, this will then be added to a list of all discovered groups.
This reduced list of groups for each unit, will be put together
and written again into a object file, called mesh.obj, since this
represents the 3D structural data of the unit that is needed by
the AI models. One of these units can be seen in the appendix
figure 14.

Given the list of the groups, the distinct units can be
calculated with their minimum and maximum coordinates. The
units’ position will be compared to each-other to find out
which units are adjacent to which units. If a unit doesn’t have
an adjacent unit on a side, the size of the unit will be expand to
that side with a meter. This results in the program being able
to detect certain MEP components that are on the outside of
a unit. Each unit will get their own dictionary with their unit
id, minimum coordinates, maximum coordinates and their list
of adjacent units. Also, the dictionary will contain an empty
list for every MEP type, this is where the components will be



stored that are in that unit. This process will deliver all the
structural information about every distinct unit.

Obviously, the same kind of process needs to happen with
the MEP components. Again, when the component object file
is being read, it is split into groups while unnecessary data
gets removed. Before the components can be linked to an unit,
another step has to be taken. Some type of components are
built up from multiple smaller components. For example, a
standard outlet is built up from 8 smaller components. So these
8 smaller components are merged together, into one group,
making one big composite component. This is done for all the
components that this is applicable for. A Json file has been
made where the name of the component is stored, together
with the amount of components needed to make one big
composite component. This makes the amount of components
per unit drastically decrease. Afterwards the components are
linked to a unit and the program checks if the middle of the
component is within which unit. The component will be added
to the dictionary of the unit.

In the end of this pipeline, per unit, 2 files will be made; one
file, mesh.obj, containing the meshes of the unit and the other
file, data.json, containing the units information dictionary.
These will be handed towards the AI model for training
purposes.

B. Data Normalization and Embedding

To address the problem of generating components using a
neural network, the data needs to be transformed into a numer-
ical form that unambiguously defines the input. Furthermore,
it is preferable that the input vector values are in the range of
< 0,1 >, allowing the neural network bias nodes to contribute
to the calculations even in the initial stages of the inference.

Our neural networks take three types of inputs that are
concatenated:

1) placed components list

2) mesh

3) component to be placed (only in case of location pre-
dictor NN)

1) Embedding of placed components list

The data we’re considering contains numerous components
of various types; as such, it is of vital importance to include
all this in a possible embedding. Initially, we included this
data as a flattened matrix of size NxzM, where N was the
number of already placed components in the unit and M was
equal to the 3 + ¢, where 3 is the 3 degrees of freedom
representing the component’s position and c is the number of
all the component types which appeared in the training dataset.
In such a matrix the component type was specified using a
one-hot vector of length c. This vector was then padded with
zeros to a predecided, during training, size.

Nevertheless, this approach suffered from a very serious
problem. As the resulting matrix was sparse, due to only 4
out of every tens or even hundreds of values containing non-
zero values, this approach was not scalable. The embedding
we developed to address this problem was to create a corre-
spondence between each set of 3 subsequent values in the

vector and a component type. Resulting embedding vector
efficiently utilizes its space to encode the components at the
cost of decreasing the flexibility of the embedding process,
possibly creating issues when applied on unknown datasets.

The number of the sets allocated to each component type
would be equal to the sum of number of times that component
type appeared at most across all the units in the training dataset
and the offset value, which we have set to be 2 to allow the
usage of our neural network on the datasets containing more
components per unit than seen before.

In order to normalize the values, the location of the unit
is deducted from the location of each component and the
resulting value is divided by 7000. This value is derived from
the fact that the largest of the dimensions of the units, which
we assume are standardized is 7000 [mm]. As such regardless
of how the units are rotated the values of the locations of the
components are within the range < 0,1 >.

2) Mesh

The implemented embedding process for the meshes is
relatively straightforward. Once the mesh is loaded from the
.obj file, n points are sampled from it. The coordinates of these
points are then normalized in an exactly same manner as the
coordinates of the components. The normalized values of the
coordinates of the points are then embedded into a vector of
length 3xn.

As sampling randomly shuffles the order of the points, an
embedding acquired in this way cannot be expected to have
a strict internal structure. Possibly making the application of
the Convolutional Neural Networks, which view small “’local”
parts of the embedding, less effective. In order to mitigate this
issue and impose some level of structure we sort all the points
by their ”x” coordinate.

3) component to be placed

In order a embed a component type of the component we
want to place, we construct a one-hot vector v of length c,
where ¢ is the number of different component types in the
training dataset and set v[i] = 1, where i is the index of
the given component type as determined during the training
process. All the remaining values of the vector are set to 0.

C. Al Model

Using PyTorch ((Paszke et al., 2019)), we have developed
two Al models that operate iteratively and sequentially in order
to generate a solution:

1) Type Predictor
2) Location Predictor

1) Type Predictor
The type prediction model is a multi-layer neural network
of following specifications:

o Input:

1) Already placed components,

2) unit mesh,

3) components placed in the surrounding units,
4) meshes of the surrounding units.



o Output: A vector v of length c, where v[i] represents the
probability that the component with component type of
index i should be placed in a unit.

As can be seen from the description of our output, we didn’t
formulate the problem as a classification problem, as would
normally be expected, but as a regression problem instead.
As such, we don’t normalize the output using the Softmax
function, as is common with classification problems.

We have made such a decision as the predicted likelihoods
of component types are not necessarily exclusive, i.e. the fact
that component A should be placed in the unit, does not
necessarily mean that the component B shouldn’t be placed.

Ultimately, the component type that is chosen to be placed
next is the one with the highest likelihood.
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Fig. 5. Architecture of one of the type predictor models

2) Neural Network for Location Prediction

The location prediction model builds upon the architecture
of the type predictor but incorporates the encoder of an
additional input type, allowing for to-be-placed component
specification.

o Input:

1) Already placed components,

2) unit mesh,

3) one-hot vector, representing to-be-placed compo-
nent,

4) components placed in the surrounding units,

5) meshes of the surrounding units.

o Output: A vector of length 3 representing the coordinates
the component should be placed on (X, y, z).
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3) Neural Network Internal Architecture

The neural network was designed to facilitate a highly
scalable architecture. As such during the inference stage each
of the input types is first considered separately. A smaller
encoder is trained for each input type to encode the data into
a latent space vector, facilitating a level of data compression
within the neural network.

To encode the surrounding units, first, each input type for
each unit is run through a corresponding encoder. Then, the
latent space vectors are concatenated, resulting in the latent
space vector for the surrounding units.

Once the latent space vectors of all inputs are acquired,
the vectors are concatenated, and a stack of linear layers is
applied. Afterwards, a stack of smaller linear layers is applied
again, adjusted so that it returns data in the correct format.

Our models incorporate Batch Normalization, described in
(Ioffe & Szegedy, 2015), which helps in minimizing the
covariance shift negatively affecting the learning process,
allowing for faster and more predictable training.

Our best models also use Convolutional Neural Networks,
which allow us to take advantage of the internal structure of
our embedding of already-placed components. These CNNs
proved very useful in extracting spatial relationships among
embedded component positions. After these convolutions, we
apply a flattening layer, feeding it into fully connected linear
layers.

To ensure that our neural networks do not suffer from dying
neurons, we’re using the leaky ReLu as our activation function.

D. Al Model Training Framework

Training framework for the neural networks might be just as
important as the internal neural network architecture and the
input embedding. The choice of an appropriate loss function
might be a deciding factor on whether the neural network will
memorize the training dataset or learn the general patterns, it



might also be a deciding factor between a steady convergence
and stopping at a high local minimum.

The training framework we developed takes these consider-
ations into account.

1) input-output pair generation

During a single Epoch, the units in the training datasets are
merged into single set of units. Then the number of cumulative
component counts for each unit is computed.

The highest value m is chosen as a reference for the number
of batches that will be generated.

The generated number of batches b:

b= floor(k xm)

, where k is a value between O and 1, which leverages the
epoch length and the amount of progress to be achieved (and
permutations considered) within a single epoch. The value we
used is & = 0.3 for training dataset, and £ = 0.1 for the test
and verification datasets.

input generation: Each batch contains examples of all the
units within the training dataset, with a random number of
already placed components, specific components were also
randomly chosen. This approach allows us to take into account
a significant number of possible already-placed component
lists, minimizing risk of overfitting.

For each input-output pair, a new set of points is sampled
from the loaded mesh to ensure that the neural network doesn’t
memorize the units by their meshes but can instead consider
a large set of possible 3D geometries.

To generate a to-be-placed component type for the loca-
tion predictor, the generated already-placed component list is
compared with the list in the training dataset and a random
component type among those of which instances are more
numerous in the list in the training dataset is chosen.

output generation:

For the location predictor, the output is a list of all the
coordinates the to-be-placed component type is located in and
which are not already present in the generated already-placed
component list, which is part of input.

For the type predictor, the output is a vector v of length
¢, where c is the number of all component types the neural
network was trained on. v[i] = 1 if the corresponding
component type’s instances are more numerous in the training
dataset than in the generated already-placed component list,
which is part of input, else v[i] = 0.

loss functions:

For the location predictor, the loss is
min(RM S E(output, position;)), where position;
corresponds to the i, position in the reference output.
This approach allows for a dynamic adjustment of the
positions proposed by the neural network, guaranteeing that
all possible solutions would be accepted.

For the location predictor,
RM SE(output, ref_output).

Optimizer: Optimizer used is the Stochastic Gradient De-
scent, providing a predictable traversal of the solution space.
The parameter values, which were used, are:

the loss is

o learning rate = 10e~°

e momentum = 0.1

Test and Verification loops: The test and verification loops
were constructed analogously, excluding the backpropagation
step, to test the model’s performance during training.

E. Autonomous component generation

The application of our neural networks is relatively easy.
Given an arbitrary threshold ¢ between O and 1.

1) apply the type predictor on a unit

2) if none of the values in the type predictor’s output is
above t, then stop generation

3) apply the location predictor on a unit with the com-
ponent corresponding to the largest value in the type
predictor’s output as a to-be-placed component

4) add the to-be-placed component with the generated
location to the unit

5) return to step 1)

F. Metric for measurement of the accumulated error

Given a unit for which we have a reference solution and
have a generated solution, two methods were developed to
ascertain the accumulated error.

1) Number of generated components without corresponding

component in the reference solution

This metric is very straightforward the number of generated
components and reference components per type per unit is
computed and the two sets are compared.

For example, given component type A:

o If there are 2 components of this type in the reference
solution and 1 was generated, the number of components
without a corresponding one is 0.

o If there are 2 components of this type in the reference
solution and 2 were generated, the number of components
without a corresponding one is 0.

o If there are 2 components of this type in the reference
solution and 4 were generated, the number of components
without a corresponding one is 2.

2) The minimum-distance maximal matching between the
generated components and the reference components

To compute this metric, a distance matrix is first constructed
between the generated components and the reference compo-
nents.

Afterwards, the networkx library ((Hagberg, Schult, &
Swart, 2008)) is used to phrase the problem as a matching
problem in a bipartite graph.

This metric provides a good overview of the actual accumu-
lated placement error by punishing the algorithm for concen-
trated placement of components if the reference components
are not concentrated as well.

G. Expert System for Location Prediction

The expert system introduces a decision tree regressor to
predict the placement of components within a unit. The trees
operate on a set of features derived from the JSON files
representing architectural models from four buildings. These



features include variance in the x, y, and z coordinates,
distances to the nearest walls, and the dimensions of the
components. Additionally, each unit was divided into eight
equal parts, twice along z, y, and z axes, and the sub-
region where each component is located was encoded as a
categorical feature. Feature importance analysis revealed that
unit subdivisions and component dimensions were the most
significant predictors for accurate placement. Conversely, co-
ordinate variance contributed less due to the minimal variation
observed for many components.

After feature extraction, the dataset was divided into training
(80%) and testing (20%) subsets to ensure robust model eval-
uation. Three separate decision tree regressors were trained to
predict the minimum z, y, and z coordinates of a component’s
placement. These predictions correspond to the minimum
corner of the component’s bounding box and were combined
with the component’s dimensions to calculate the bounding
box’s placement within the unit. To ensure valid placement,
the system uses a collision detection mechanism. For each
component, the algorithm checks for overlaps with previously
placed components. If a collision was detected, the placement
was adjusted incrementally using a brute-force approach until
the component is successfully placed.

The hyper parameters of the decision trees were optimized
to balance performance metrics. The final configuration set
the maximum depth to 10, the minimum sample split to 2
and the minimum samples leaf to 1. This method provides a
deterministic and more interpretable baseline for component
placement, providing a comparison with more advanced neural
network models we developed.

H. Object file reintegration

The output generated by the Al is a JSON file containing
a list of 2 things; the name of the generated component
combined with their generated minimum location. Now this
data should be reintegrated back into an object file to show
the end result. This is done by having a stored mesh and their
respective minimal location of every distinct component saved.
The generated minimal location will be matched by name
with a saved component.The next step will be compared to
the stored minimal location with the output minimal location,
their difference represent the offset of the new component. In
order to place the new component in the correct position, the
difference will be added to all the vertices of that group. This
results in a correctly placed component per unit, which then
can be combined in a final object mesh contain the whole
generated MEP for a building, as can be seen in the appendix,
figure 15 and figure 16. The red components represent the
generated components.

1. GUI

The GUI created for this project uses the TKinter and
PyVista libraries in Python to ensure a user friendly environ-
ment. An environment in which the user can input the building
obj file manually extracted from Revit, select the output file
path, enter the building name, view the dynamically created

floor plan, select the quantity of components per unit and view
the unit with its component in a 3D-viewer. Most of these of
function were made with the TKinter package, which the most
used standard in Graphic User Interfaces for python. The 3D-
viewer was made using PyVista which a 3D plot and mesh
type package from C++ put in a python wrapper.

J. Evaluation Methodology

The evaluation framework we developed for this project
compares our generated building models with a solution model
to assess their accuracy. We aim to evaluate the positional ac-
curacy of component placement, whether the right components
were placed and if they were placed correctly. To achieve this
we make use of the metrics below.

IV. EXPERIMENTS
A. Neural Network experiments

We conducted experiments to evaluate the performance
of our neural network models under various configurations
and enhancements. Throughout the experiments, we collected
training, testing, and verification losses. These metrics allowed
us to comprehensively assess the effectiveness of the proposed
modifications.

The training and test datasets were constructed from
three datasets, which are named “gebouWe”, “opvang” and
“paviljoen”. The training dataset used 70% of the units in the
datasets, and the test dataset used the remaining 30% of the
units.

The verification dataset was constructed from rotterdam”
building.

Specifically, we compared the baseline performance of our
simplest neural network implementation with several enhanced
versions. These enhancements included the incorporation of a
context window to provide additional information, the inte-
gration of convolutional neural networks (CNNs) to leverage
spatial hierarchies in the component list data and unit meshes.
By systematically analyzing these configurations, we aimed
to determine the impact of each improvement on the overall
accuracy, stability, and generalization of the model.

Additionally, we have autonomously generated the entire
”paviljoen” building 10 times with threshold of 0.9 and com-
puted the average number of generated components without
corresponding component in the reference solution and the
minimum-distance maximal matching between the generated
components and the reference components. The neural net-
works used for this are the further trained (for around 200-250
epochs) versions of best performing architectures.

B. Expert system experiments

We experimented on the tuning of the model. We got that the
model predicts the best when these parameters are set for the
decision tree regressor, MAX DEPTH = 10, MIN SAMPLES
SPLIT = 2, MIN SAMPLES LEAF = 1.

We conducted experiments to evaluate the performance
of our expert system for placing components. The system’s
performance was evaluated using the following metrics: Mean



Absolute Error (MAE) for X, Y, and Z coordinates. Root
Mean Square Error (RMSE) for X, Y, and Z coordinates.
A Euclidean MAE and Euclidean RMSE were calculated
to provide a single aggregated measure of placement error
across all dimensions. This was done for the placing of each
component in all units of buildings this for all the units
in buildings. We then saved each unit’s measurements. The
evaluation process was conducted for all units within multiple
buildings (gebouwE, opvang, paviljoen, rotterdam). For each
unit, the system predicted the placement of all components
and compared the predicted placements against ground truth
data from the JSON files. Metrics were calculated for each
unit. Then the average metrics Euclidean MAE and Euclidean
RMSE were calculated for each building to summarize overall
placing performance. The

Detailed metrics for each unit are presented in a CSV file,
allowing for analysis of individual unit performance. Average
Building-Level Performance was computed for each building,
demonstrating the system’s ability to generalize across differ-
ent spatial layouts.

V. RESULTS

The results of the experiments reveal significant differences
in model performance based on the configurations tested.

A. Loss Metrics
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Fig. 7. The architectures that utilize the CNNs seem to perform best
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Fig. 8. The architectures that utilize the CNNs seem to perform best, the linear
neural networks seem to work better with the implemented mesh embedding
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Fig. 9. The architectures utilizing context window seem to have a slight
advantage over the other architectures
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values until 50th Epoch

WithContextwi | WithoutContext

1,80
1,60

1,40

1,20
1,00
0,80
0,60
0,40
0,20
0,00

MLPWithConte = MLPWithoutCo = ndow_CNN_Us Window_CNN_
xtWindow ntextWindow = edInComponen = UsedinCompon
tHistory entHistory
M training loss 1,19 1,28 1,25 1,49
M test loss 1,25 1,37 1,34 1,57
W verification loss 1,24 1,34 1,36 1,58

mtrainingloss mtestloss M verification loss

Fig. 10. The MLP seems to have best results for the type prediction taks

B. Accumulated error metrics
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Fig. 11. Results of autonomous component generation with threshold of 0.9

C. Expert System Performance

We observed that the tree for the z coordinate is much more
accurate than the ones for the x and y coordinates. The biggest
error for z is 520mm, while for z and y it is 2070mm and
2000mm.
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Furthermore, when comparing the Euclidian distance of
components to the ones in the test data, we get a mean absolute

error per building between 1800-2500mm. For comparison an
agent that places components randomly performs with MAE
4000mm.
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Fig. 13. MAE for predictions of each individual axis

The expert system has an average error per building of
2279.18559mm. For comparison the Al driven agent performs
with an average error of 1701.42839mm, while a random agent
with randomized placements has 4000mm.

VI. DISCUSSION

The training, test, and verification losses clearly show model
performance. All configurations show similar values across
these metrics, especially during later epochs. This consistency
suggests that the models performed comparably across the
different datasets, indicating stable learning outcomes and the
implemented approach’s good generalizability.

A. Impact of the context window

The use of a context window plays a pivotal role in
enhancing model performance. Models incorporating context
windows consistently outperform those without. This high-
lights the importance of incorporating surrounding unit data
to provide a much better contextual understanding during
prediction.

B. Importance of the CNNs

The integration of CNNs in the component list significantly
impacts model performance in location prediction. When
CNNs are used to process component history with a context
window, the model achieves the lowest training loss (0.14),
test loss (0.13), and verification loss (0.14). This indicates that
the combination of CNN-based feature extraction and context-
aware design offers the most effective solution for predictive
accuracy.

In contrast, CNNs applied to unit mesh analysis with a
context window result in higher losses across all metrics
(training: 0.24, test: 0.35, verification: 0.38). This suggests
that while CNNs are capable of extracting geometric features,
they seem unable to take advantage of the internal structure
of the implemented embedding of the meshes.

Surprisingly, applying CNNs to the component list doesn’t
improve the results and might instead negatively affect them.



Although we lack data to say with certainty, a possible
hypotheses might be that during type prediction, the inter-
component type relationships are more important for the model
than the intra-component type relationships. The CNN, which
looks only at a narrow view of the components, might not be
able to guarantee this, as well as fully connected layers.

C. Performence upon autonomous application

Although performed on the training dataset, the results
of the computed accumulated error metrics show a very
good performance in type prediction of around 70% with
the generated component count of around 400. While the
mean placement error is within 1.1 meter leaving some area
for improvement. This performance is sufficient to show
promise in the developed neural networks, especially that the
neural networks that achieved this were trained on a personal
computer for just a few hours.

D. Expert systems

Our experiments tell us that a rule-based approach while
not as accurate as the Al, is still worthwhile since it performs
relatively well and much better than random placement. It
serves as a good baseline for the neural network and shows that
our approach is feasible and could be enhanced even further
with future improvements.

The decision trees in our expert system generate rules based
on the position of components in the test data. Future research
teams could analyze the specific functionality of components
and the manners of their placement to manually create addi-
tional rules. If the task expands to include different categories
of components (for example, plumbing components), the trees
could use the knowledge gained from this additional attribute.

VII. CONCLUSION

In this proof-of-concept study, we developed and tested Al-
driven and expert systems methods to automatically generate
MEP components in buildings. The best performing method
we had was our CNN-based neural network, particularity when
merged with a context window referencing the surrounding
units. The implementation of the context window demon-
strated consistently lower placement errors compared to both
the baseline linear methods and the expert system decision
trees. The expert system, while achieving lower accuracy,
provided an interpretable and deterministic alternative, making
it a valuable baseline.

Our results show that including CNNss in the neural network
architecture might significantly improve performance. How-
ever, this requires prior consideration of the internal structure
present in the embedding and whether the CNNs are capable
of fully utilizing it.

More efficient or structured embeddings of the unit meshes
and less restrictive embedding of the component lists should
be considered during future work. As at the moment the
spatial limitations of the model limit the possible scope of
its application and its flexibility.
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The results prove the feasibility and potential time savings
of automated MEP modeling. By embedding existing com-
ponent layouts, the neural networks effectively learned spatial
relationships, recognizing patterns in units and component em-
beddings well. These initial findings highlight how contextual
information, such as adjacent units, can significantly improve
predictive accuracy for both component type selection and
placement.

Ultimately, our pipeline presents a scalable solution that
can further benefit from evolving deep learning techniques
and growing modular construction demands, thus reducing
human modeling effort and construction lead times in modern
architectural practices.
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VIII. APPENDIX

A. MEP models

Fig. 14. Mesh of one unit

Fig. 15. MEP solution side view
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Fig. 16. MEP solution top view
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