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Abstract—Aviation’s climate impact is significantly amplified
by non-CO; effects, primarily the formation of contrail-cirrus
clouds. Although ground-based cameras offer continuous high-
resolution monitoring capabilities that overcome the limitations
of satellite imagery, existing methods have struggled to reliably
attribute contrails to specific flights. This thesis presents an
end-to-end pipeline for automated detection, tracking, and a
promising novel approach for flight attribution of contrails from
ground-based camera imagery. The proposed system integrates
a Detectron2 Mask R-CNN model for high-precision instance
segmentation, a multi-object tracking algorithm to maintain
contrail identities across frames, and a spatiotemporal correlation
module to link contrail tracks to multi-radar correlated historical
flight data. Through extensive experimentation, a Mask R-
CNN model configured for this task surpasses prior work in
segmentation accuracy, achieving a mask mAP of up to 64.8826 %
(at IoU=0.50). A comparative analysis shows that the Norfair
tracker (MOTA: 32.5, IDF1: 59.2) outperforms DeepSORT in
maintaining track identity despite 15-second inter-frame gaps.
The complete pipeline successfully attributes 46.2% of short-
lived contrail tracks to unique flight IDs, demonstrating a novel
method for transforming raw sky video into a flight-resolved
contrail dataset. This work provides a validated prototype that
enables detailed climate-impact assessments and supports the
development of contrail mitigation strategies.

Index Terms—contrails, computer vision, Mask R-CNN, Detec-
tron2, DeepSORT, climate impact, MOT, instance segmentation

I. INTRODUCTION

Aviation warms the climate not only through CO, but
also through non-CO, effects, most prominently the radiative
forcing of contrail-cirrus clouds, whose global impact is now
estimated to rival or even exceed the cumulative warming from
aviation CO, itself [1]-[3].

Contrails form when hot, moist exhaust gases rich in water
vapor and soot mix with cold, ice-supersaturated air in the
upper troposphere (typically 8—12 km altitude). As the mixture
cools, excess water vapor condenses on soot nuclei and freezes
into ice crystals;

The increasing recognition of these contrail-cirrus clouds
as significant contributors to aviation’s overall climate impact
underscores the urgent need for effective monitoring and
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mitigation strategies. Addressing this imperative, this thesis
focuses on enhancing ground-based observation capabilities.
This approach is particularly crucial as it facilitates the direct
and near real-time detection of thin and short-lived contrails-
precisely the types that often elude satellite-based systems due
to their limited temporal revisit rates and spatial resolution.
Moreover, the high-fidelity data generated by such ground-
based systems serves as a vital resource for the validation and
improvement of contrail prediction models, which are essential
for the development and implementation of effective contrail
mitigation strategies.

Satellite images furnish global coverage, yet young or
optically thin contrails are frequently missed because of spatial
resolution and masking by other cloud layers [4]-[6]. Net-
works of ground-based cameras overcome these limitations
by providing continuous imagery that captures contrail forma-
tion within seconds of exhaust release and tracks subsequent
growth in real time [7], [8].

Early ground-camera studies by Croes [9] and Van Huffel
et al. [10] demonstrated single-frame contrail detection and
ad-hoc flight matching. Despite encouraging results, existing
ground-camera methods still treat contrails as frame-isolated
detections. Two open challenges therefore remain:

1) Temporal identities: Robust tracking of individual con-
trails over time, even with intermittent visibility or
complex interactions.

2) Robust linkage to parent aircraft: A reliable method
to associate tracked contrails with the specific flight IDs
of the aircraft that generated them.

Addressing both simultaneously is essential for transform-
ing inexpensive sky video data into flight-resolved contrail
datasets, which are crucial for detailed climate analysis and
the validation of contrail avoidance measures. This thesis ad-
dresses this shortcoming by introducing a complete detection
— tracking — spatiotemporal attribution pipeline that first
builds continuous contrail tracks and only then links each track
to the originating flight.

This thesis seeks to address the aforementioned problem
statement by investigating the following research questions:

1) How do different configurations of the Detectron2 Mask
R-CNN model affect the segmentation accuracy of con-



trails across their four primary morphology classes (thin,
wide, cirrus, short)?

2) Given a chosen Detectron2-based contrail detector,
which multi-object tracking algorithm specifically yields
superior performance in terms of temporal coherence?

3) Using a spatiotemporal association logic based on pro-
jected flight positions and contrail tracking pipeline,
what fraction of persistently tracked contrails can be
successfully and uniquely matched to a flight ID?

The scope of this thesis encompasses the design, imple-
mentation and evaluation of an integrated pipeline for contrail
detection, tracking, and flight attribution using ground-based
camera imagery and flight surveillance data provided by
the EUROCONTROL Maastricht Upper Area Control Center
(MUAC). The pipeline begins with detection through instance
segmentation in the Detectron2 framework, where a Mask R
CNN model that combines a ResNet-101 backbone with a
Feature Pyramid Network(FPN) identifies candidate contrails.
Various training setups and data augmentation strategies are
explored to refine this stage. The resulting detections are
passed to several established multi-object tracking algorithms
that are judged with the standard metrics used in that field. An
attribution module then pairs each tracked plume with its likely
flight by comparing their spatial position and timing. Every
step is scored quantitatively through mean average precision
and recall for detection, multi object tracking accuracy and the
identity F1 score for tracking, and the percentage of successful
matches for attribution, complemented by a careful visual
review.

Several practical limitations inevitably shape the conclu-
sions. The camera records a new frame only every fifteen
seconds, which complicates the following of very dynamic
or short lived contrails. Projecting flight paths into the images
is also imperfect because the radar-derived track timestamps
are not always perfectly synchronised with the camera, and
the camera calibration can carry small errors in both its
internal parameters and its orientation. The attribution logic
is tailored for fresh contrails that still sit close to the aircraft
trajectory and therefore does not address older plumes that
drift with the wind and would require a full atmospheric
model. In addition, all experiments use the MUAC dataset with
its human-annotated imagery, which due to the subjectivity of
the task introduces errors in the data. Furthermore, the trained
model may need adaptation before it performs well in other
regions or with different camera systems.

Several important topics remain outside the remit of this
work. The study does not propose entirely new neural archi-
tectures but focuses on configuring, training, and analysing
current state of the art models. Questions related to real
time deployment, fault tolerance, and large scale engineering
are left for future work. Likewise, the physical processes
that create contrails and their broader climate effects are not
examined in depth here, although the data products that emerge
from the pipeline are intended to support future atmospheric
research.

A. Thesis Outline

Chapter 2 sets out the Theoretical Background, introduc-
ing the physics of contrail formation and lifecycle taxon-
omy. Chapter 3 surveys the Related Work, covering satellite-
and ground-based detection studies, recent deep-learning ap-
proaches to contrail segmentation, and current attempts at
tracking and flight attribution. Chapter 4 presents the Data and
Methodology, detailing the MUAC ground-camera imagery
and the multi-radar-correlated flight-track dataset, preprocess-
ing steps, the Detectron2 Mask R-CNN configuration, the
Norfair and DeepSORT trackers, the spatiotemporal attribu-
tion logic, and the evaluation metrics used throughout the
pipeline. Chapter 5 describes the Experimental Implementa-
tion, including the hyper-parameter sweeps, ablation studies
and software-hardware environment for training and testing
each module. Chapter 6 reports and discusses the Results,
providing quantitative and qualitative evaluations of detection,
tracking and attribution performance, together with an analysis
of practical limitations such as the 15 s inter-frame interval.
Finally, Chapter 7 concludes the thesis, revisits the research
questions, assesses how far the problem statement has been
addressed, and outlines avenues for future work and potential
system enhancements.

II. THEORETICAL BACKGROUND

A condensation trail (contrail) is an artificial cloud of
ice crystals that appears behind an aircraft when exhaust
gases rich in water vapour and soot meet air that is cold
(< —40°C) and humid enough to become supersaturated with
respect to ice. Under these conditions, the plume crosses
the Schmidt-Appleman threshold, the vapor condenses onto
the soot particles, it freezes almost instantly, and a line-
shaped cloud becomes visible [11]. If the ambient air remains
ice-supersaturated, the trail persists and spreads under wind
shear, ageing into diffuse contrail-cirrus. These optically thin
but widespread clouds trap outgoing infrared radiation more
effectively than they reflect sunlight, generating a net positive
radiative forcing comparable to aviation CO,.

Lifecycle classes (operational shorthand) are the follow-
ing:

1) Short / Evanescent — dissipate within seconds in dry

air.

2) Thin / Persistent-narrow — survive for minutes while

remaining filament-like.

3) Wide / Persistent—spreading — broaden into kilometre-

scale filaments.

4) Contrail-cirrus — shear, diffusion and mixing create

extensive cirrus-like sheets.
(1], [31, [12].

For visual representation, figure 1 has examples for all the
different life cycles of contrail formations. These examples
showcase the hard nature of the detection task. Accurately
identifying and segmenting contrails is challenging due to
several factors: images often contain the sun, which can cause
glare and obscure details; other natural cloud formations can



be visually similar to contrails, leading to potential misclas-
sification; and contrails themselves exhibit wide variations
in morphology, optical thickness, and persistence, making
contrail instances particularly difficult to distinguish against
a dynamic sky background.

-
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Fig. 1: Examples of the four lifecycle classes ( Top-left: Short,
Top-right: Thin, Bottom-left: Wide, Bottom-right: Contrail-
cirrus).

III. RELATED WORK

Research on contrails spans three complementary areas:
(i) remote-sensing detection, (ii) object segmentation and
classification, and (iii) multi-frame tracking with flight-level
attribution. The review below highlights key contributions in
each domain and the remaining gaps that motivate this thesis.

A. Satellite-Based Detection

Mannstein et al. used a split-window threshold on the
NOAA-AVHRR thermal-IR channels (10.8 and 12.0 pum) to
detect linear contrails at the sensor’s native ~1.1 km nadir
resolution, achieving near-global coverage but noting that thin
or short-lived trails often fell below AVHRR’s detectability
limit [4]. Follow-on gridded products such as GridSat-GOES
remap the GOES Imager IR data (native ~4 km at sub-satellite
point) onto a 0.07° (~7-8 km) grid, yielding a much finer
temporal cadence (/15 min) at the cost of coarser spatial
detail; Knapp and Wilkins therefore caution that sub-pixel
plumes and features forming between successive sector scans
can still be missed [6]. These limitations underline the need
for alternative observing systems capable of capturing contrail
formation within seconds of exhaust release.

B. Ground-Camera Detection and Segmentation

Ground-based cameras overcome the temporal and spatial
limitations of satellites by providing continuous, meter-scale
imagery. Schumann et al. demonstrated photogrammetric re-
construction of contrail height, width and growth rate from
stereoscopic camera pairs [7]. More recently, Croes applied
U-Net to single frames for near-real-time contrail alerts in
an operational setting [9], while Van Huffel et al. compared
YOLOVS and Mask R-CNN detectors, reporting a bounding-
box mAP( 50 of 60.9 on the MUAC data set [10], [13]. Low et

al. extended ground-camera monitoring to a 14-hour sequence
and manually matched a subset of tracks to flight telemetry,
illustrating the potential for long-duration observation [8].

C. Deep-Learning Architectures for Instance Segmentation

Accurate radiative-forcing estimates require pixel-level out-
lines rather than coarse bounding boxes. Mask R-CNN [13],
as implemented in Detectron2 [14], has become the de-facto
standard for instance segmentation. Van Huffel et al. trained
a Mask R-CNN on MUAC imagery and reported a mask
mAPy 50.0.95 of 21.6 [10]. Optimising segmentation networks
specifically for the thin, elongated morphology of contrails
therefore remains an open problem.

D. Tracking and Flight Attribution

Linking detections across frames is complicated by the non-
rigid, wind-driven evolution of contrails and by the long inter-
frame intervals typical of sky-camera deployments. To date,
generic multi-object trackers such as DeepSORT [15] have
not yet been systematically bench-marked on contrail imagery.
On satellite data, Chevallier et al. combined Mask R-CNN
detections from the GOES-16 Imager with ADS-B telemetry to
associate persistent kilometre-scale contrails with aircraft, but
they reported only heuristic quality measures and did not com-
pute CLEAR-MOT scores [5]. For ground-camera imagery,
Croes developed a lightweight ellipse-matching scheme that
propagates contrail masks across consecutive frames and then
assigns each track to the closest aircraft in image space; the
approach was validated qualitatively but without MOT metrics
or ablation studies. [9] Low et al. (2024) followed a 14-h
camera record and matched tracks to radar data by visual
inspection, again foregoing an automated MOT evaluation.
As a result, a quantitative, end-to-end benchmark of contrail
tracking & flight attribution on high-resolution sky imagery
and a head-to-head comparison with standard trackers such as
DeepSORT or Norfair, remains an open research need. [8]

E. Outstanding Challenges

The review identifies three unresolved issues: (1) segmenta-
tion models tailored to contrail morphology; (2) robust multi-
object tracking across long (210 s) frame gaps; and (3)
automated, unambiguous linkage of ground-camera contrails
to individual flights in dense airspace. The present thesis
addresses these gaps by integrating a tuned Mask R-CNN
segmenter, Norfair-based tracking, and a spatiotemporal flight
attribution module into a single, documented pipeline.
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Fig. 2: Proposed end-to-end ground-camera contrail-

monitoring pipeline: instance segmentation, multi-object
tracking and spatiotemporal flight attribution.

Train
Model

IV. DATA AND METHODS

The aforementioned flowchart in figure 2 is explained in
this section



A. Data

Image data were collected beforehand with ground-based
cameras positioned throughout MUAC airspace under a wide
range of weather and lighting conditions and 4 wind directions.
The resulting dataset contains 5,016 annotated images with
6,447 labelled contrails. After Detectron2 automatically dis-
carded frames without annotations, 2,907 images remained for
training and 957 for testing. For the flight-attribution stage Eu-
rocontrol’s multi-radar correlated track archive has been uti-
lized, which fuses returns from several primary and secondary
surveillance radars into time-stamped, three-dimensional air-
craft trajectories (latitude, longitude, altitude) together with the
corresponding flight identifiers.

B. Contrail Detection and Instance Segmentation

To identify and precisely delineate contrails within the
imagery, an instance segmentation approach is employed. This
study utilizes the Mask R-CNN model, a prominent two-stage
framework, implemented within Detectron2 [14]. The chosen
backbone for the Mask R-CNN is a ResNet-101 with a Feature
Pyramid Network (FPN), which aids in detecting objects at dif-
ferent scales. Mask R-CNN extends Faster R-CNN by adding
a parallel branch for predicting segmentation masks on each
Region of Interest (Rol), providing pixel-level accuracy for
each detected contrail instance. This is particularly beneficial
for capturing the often thin and elongated morphology of
contrails. [13]

C. Contrail Tracking

Once contrails are detected in individual frames, a multi-
object tracking (MOT) algorithm is applied to maintain their
identities across sequential frames, creating trajectories. This
research evaluated two tracking algorithms: DeepSORT [15],
which incorporates appearance information for robust tracking,
and Norfair, a lightweight, centroid-based tracker. While both
were considered, Norfair was ultimately selected for the final
pipeline, particularly due to its effective performance in the
context of flight attribution as detailed in the results (Section
Results & Discussion). Norfair uses a Kalman filter to predict
object motion and associates detections based on Euclidean
distance to these predictions. For this application, a custom
Kalman filter factory is implemented to handle variable time
intervals (dt) between frames, which is crucial given the
approximate 15-second image capture interval. The tracker
is configured with parameters such as distance threshold,
initialization delay, and maximum age for tracks.

D. Flight Attribution

The final stage of the pipeline is to attribute each tracked
contrail to a specific flight. This process, involves several steps:
1) Flight Data Acquisition and Filtering: Historical
multi-radar correlated tracks for the target date are
extracted from the MUAC surveillance archive. Each
track provides latitude, longitude, altitude (Mode C),
callsign, a unique track ID, and five-second timestamps.
Tracks are retained only if the aircraft is within the

nominal contrail-forming altitude band and inside a
predefined temporal window around each image time
stamp.

2) Camera Calibration and Projection: Camera intrin-
sic parameters, such as, focal length, principal point,
image dimensions and extrinsic parameters, such as,
GPS position, elevation, heading, tilt, and roll along
with lens distortion coefficients, are used to establish a
transformation model from the cameratransform library
[16]. The fidelity of this model is directly dependent
on the precision of these calibration parameters and
the temporal synchronization of the data sources. This
model allows for the projection of 3-D flight positions
from the multi-radar tracks into 2-D pixel coordinates
on the camera images.

3) Spatiotemporal Correlation: For each image, active
flights within a defined time window (e.g., £30 seconds)
and maximum distance (e.g., 100 km) from the camera
are considered. Their 3D positions are projected onto
the image plane.

4) Track-to-Flight Association: As the multi-object
trakcer tracks contrails, it provides evolving centroid
positions and unique track IDs. The flight attribution
logic then associates these contrail tracks with the pro-
jected flight positions. This study utilizes a movement-
based orientation of the contrail. The leading corner of
a contrail’s bounding box, determined by its direction
of movement, is used as the primary point for asso-
ciation.This geometric approach is most effective for
’Short’ and *Thin’ contrails, because these contrails have
not yet drifted far from the generating aircraft’s flight
path. If this leading point is within a specified pixel
distance threshold of a projected flight’s 2D position, a
potential match is registered.

5) Majority Vote and Deduplication: Over the duration of
a contrail track, votes are accumulated for each flight ID
that is consistently matched. A majority vote system then
determines the most likely flight ID for each contrail
track. To ensure unique attributions, if multiple contrail
tracks are attributed to the same flight, the one with
the strongest evidence meaning, highest vote count and
longest consistent association is retained.

This systematic approach allows for robust linkage of observed
contrails to their originating aircraft, moving beyond single-
frame heuristics.

E. Evaluation Metrics

The performance of the pipeline is assessed at each stage.
For contrail detection and segmentation, standard metrics
such as mean Average Precision (mAP) for bounding boxes
(mAPyx) and segmentation masks (mAP,5x), and Intersection
over Union (IoU) are used. For multi-object tracking, metrics
include Multi-Object Tracking Accuracy (MOTA), IDF1 score
(which balances identity precision and recall), track precision,
recall, and the number of identity switches. Flight attribution
success is primarily measured by the association rate: the



percentage of persistently tracked contrails that are uniquely
matched to a flight ID.

V. EXPERIMENTAL IMPLEMENTATION

This section details the hyper-parameter sweeps and ab-
lation studies carried out for the three core modules of the
pipeline: Detectron2 instance-segmentation, Norfair tracking
(with DeepSORT as a comparative baseline), and contrail-to-
flight attribution. All experiments were run on an NVIDIA
H100 (16 GB) GPU; model selection relied on the validation
set described in Section 3.

A. Object-Detection Experimental Setup

Baseline: The chosen model is MS-COCO-pre-trained
MASKRCNN-R101-FPN configuration in Detectron2 [14],
changing only the input dimensions from 800x1333 to
720x1280 to match the ground-camera aspect ratio. The
hyper-parameter search space explored in this study is sum-
marised in Table I.

TABLE I: Object-Detection Hyper-parameter Sweep (Mask R-
CNN)

Parameter Values Tested
ROI-Align (box) 7, 14, 28
ROI-Align (mask) 14, 28
Epoch budget 5-40

LR policy Linear, Cosine

Data augmentation. Augmentation transforms evaluated
individually and in combination:

o Horizontal flip (Detectron2 default)

o Vertical flip, random rotation

o Brightness/contrast, hue—saturation shift

o Motion blur, Gaussian noise, coarse dropout

PointRend variant. A Mask R-CNN + PointRend head was
trained under the same schedules; although edge crispness
improved qualitatively, quantitative gains did not justify the
extra inference cost, so the baseline Mask R-CNN is used in
the production pipeline.

B. Multi-Object Tracking Experimental Setup

Two trackers were benchmarked: DeepSORT (appearance-
aware) and Norfair (centroid-based). The search ranges for the
DeepSORT and Norfair tracker hyper-parameters are listed in
Table II.

TABLE II: DeepSORT / Norfair Tracking Hyper-parameters

Parameter Range
Appearance cos-sim.(DeepSORT) 0.8, 0.5, 0.3
IOU threshold (DeepSORT) 0.2-0.4
Distance threshold (NorFair) 30-90 px

Init frames (Both) 1-3
Max age (frames)(Both) 2-10

Metrics. All hyper-parameter configurations are assessed
with the standard CLEAR MOT suite MOTA, IDF1, precision,
recall, and identity-switch count, supplemented by qualitative
video overlays.

C. Flight-Attribution Experimental Setup

Projection of multi-radar-correlated flight trajectories into
image space and association of each persistent contrail track
to a candidate flight through a staged filter. The parameter
grid explored for the flight-attribution stage is summarised in
Table III.

TABLE III: Flight-Attribution Parameter Grid

Parameter Range
Radius (pixels) 30-100
Observation window  3-15 f

The primary evaluation metric is the association rate, the
fraction of persistent contrail tracks (>3 frames) that can be
uniquely matched to a flight ID.

TABLE IV: Optimal Hyper-parameter Configuration

Parameter Selected Value
Mask R-CNN Detector

ROI-Align (box) 7
ROI-Align (mask) 14
Epoch budget 40
LR policy Cosine
Data Augmentation H-Flip,
Norfair Tracker

Distance threshold (px) 75
Init frames 2
Max age (frames) 6
Flight Attribution

Radius (pixels) 70
Observation window (f) 5

All optimal hyper-parameters are summarised in Table
IV(Section VI) and are used for the results reported in the
subsequent discussion.

VI. RESULTS AND DISCUSSION

This section presents the performance evaluation of the inte-
grated contrail monitoring pipeline, beginning with the object
detection model, followed by the tracking and flight attribution
results. The evaluation was conducted on a dedicated test set
of 957 images, distinct from the 2097 images used for training.

A. Object Detection and Segmentation Performance

The trained Mask R-CNN model demonstrated strong ca-
pability to identify and segment contrails. The quantitative
performance, evaluated using standard COCO metrics for mAP
and mAR, is summarized in Table V.

TABLE V: Detection & Segmentation Performance Compari-
son

Metric Prior Work [10] This Thesis
mAPyx (IoU=.50:.95) 60.9 40 — 47.3446
mAPyx (IoU=.50) 82.8 74 - 81.6818
mARpo (100 dets) 75 55 -59.2

MAP 5k (I0U=.50:.95) 21.6 19 - 22.1740
MAP 5k (IoU=.50) 56.6 60 — 64.8826
MAR a5k (100 dets) 28.5 28 - 31.5




1) Discussion of Quantitative Metrics: As shown in Table
V, the model achieves a nuanced performance profile when
compared to previous work. The bounding box detection
metrics (mAPyox) are slightly lower than the benchmark
established by Van Huffel et al. [10]. However, this work
successfully surpasses the prior results in all key instance
segmentation metrics (MAP s and mMARa4x)-

This outcome is highly favorable for the goals of this
thesis. While bounding boxes provide general localization,
high-quality segmentation masks are critical for the physical
characterization of contrails, such as analyzing their mor-
phology, width, and optical depth evolution. The improve-
ment in mAP, (IoU=.50) from 56.6% (prior work) to 60
— 64.8826% (this thesis) indicates an enhancement in the
model’s ability to delineate the precise, often complex, pixel-
level boundaries of contrails. This suggests that the model is
better at understanding the object’s true shape, which is a more
challenging and valuable task than simply placing a rectangu-
lar box around it. Finally, the configurations mentioned in table
IV is responsible for the highest results in table V

o

Original Image

(a) Accurate delineation of Short and Thin contrails.
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Fig. 3: Examples of visual inference from the trained Mask
R-CNN model .

2) Visual Inference and Qualitative Analysis: Beyond quan-
titative metrics, a qualitative assessment of the model’s infer-
ence on test images confirms its effectiveness. As illustrated
in Figure 3, the model successfully identifies and segments
contrails under various conditions. It demonstrates a clear
ability to distinguish between different classes, such as thin,
persistent contrails and more diffuse, aged contrail-cirrus,
and can handle instances of partial occlusion and varying
illumination.

3) Classification Accuracy: Further analysis of the model’s
classification performance reveals a key improvement over
prior work [10]. The confusion matrix generated from the
test set predictions (Figure 4) demonstrates a high degree of
classification accuracy. All four contrail classes achieve over
90% correct predictions, indicating the model can reliably

distinguish between different contrail morphologies. This is
a substantial improvement over previous methods, which suf-
fered from significant confusion between classes like *Thin’
and "Wide’. This enhanced classification reliability is critical
for accurately studying contrail lifecycles and their varying
climate impacts.

Confusion Matrix

1 6
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Fig. 4: Confusion matrix for the four contrail lifecycle classes
on the test set. The strong diagonal, with accuracy above 90%
for all classes (Thin: 92.3%, Wide: 90.4%, Cirrus: 93.1%,
Short: 93.5%), indicates a highly reliable classification model.

In summary, the object detection stage yielded a model
that, while slightly trading bounding box precision, delivers
superior performance in the more critical areas of instance
segmentation and classification accuracy. This provides a high-
fidelity input for the subsequent tracking and attribution stages
of the pipeline.

B. Quantitative Tracking Results
What the numbers say. Table VI shows that Norfair

TABLE VI: Tracking Metrics on Validation Set

Tracker MOTA IDF1  Precision Recall
Norfair 32.5 59.2 71.5 60.6
DeepSORT 11.3 45.5 58.5 49.3

out-scores DeepSORT by +21.2 pp in Multi-Object Tracking
Accuracy (MOTA) and +13.7 pp in the identity-focused IDF1
metric. The same gap appears in the underlying components:

e Precision (71.5 vs. 58.5) — Norfair emits fewer spurious
boxes, so three-quarters of its detections are correct.

o Recall (60.6 vs. 49.3) — it also misses fewer true contrail
instances, capturing three out of five that appear.

o ID switches (not tabulated) — DeepSORT performs three
times as many ID changes as Norfair over the same
footage, which is the main driver of its lower IDF1.

Because MOTA pools false positives, false negatives, and
ID errors into a single score, the +21 pp lead indicates that
Norfair improves every error channel simultaneously, not just
one.
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(a) Norfair — frame 1724

(b) Norfair — frame 1724+4

1D:1038 8Bcide 4:348

(c) DeepSORT - frame 1724

1D:1130 Wide A:348

ID:1183 Thin A:32"

(d) DeepSORT - frame 1724+4

Fig. 5: Side-by-side overlays for two consecutive detections
produced by Norfair and DeepSORT.Each coloured box marks
a tracked contrail; identical ID denote the same contrail across
time.

What the pictures show. Figure 5 captures the refer-
ence frame ¢. Both trackers find two contrails,one thin and
elongated, one short and faint-and assign unique IDs. By
frame t+4 (Figure 5) the thin contrail has in height , while
the short contrail has remained the same:

1) Norfair keeps the same two IDs (280, 279) even when
the label changes.Its boxes have expanded smoothly to
envelope the widened plume, and the ID labels match
the originals. This illustrates why its IDF1 is high-it does
not restart tracks just because geometry or brightness

changes.

2) DeepSORT preserves the short/thin-plume ID 1174 but
re-labels the shorter contrail with ID 1179 and 1186.
The colour (ID) flip is an identity switch, which costs
one false negative, one false positive, and two ID errors
in the MOTA tally. Over a five-minute clip such switches
accumulate rapidly, explaining the 11.3 MOTA score.

Impact of the 15-Second Frame Gap. The 15-second interval
between frames poses a significant challenge to tracking. This
large temporal gap strains the constant velocity assumption of
the Kalman filter used by Norfair, as contrails can drift un-
predictably due to wind shear or change morphology rapidly.
While Norfair handles this better than DeepSORT, the gap
is likely a key contributor to the remaining tracking errors,
such as lower recall and occasional ID switches. This directly
impacts the downstream attribution task, as a fragmented
track cannot be reliably linked to a single, continuous flight,
underscoring the importance of robust tracking for the entire
pipeline’s success.

Why it matters downstream. Flight attribution and
radiative-forcing estimation both assume a single, continuous
trajectory per plume. When a tracker splinters a contrail into
several IDs, later modules either (i) attribute fragments to
different aircraft or (ii) discard the track as ambiguous. In the
validation run, Norfair’s cleaner ID history boosts the final
association rate by +8 pp (relative) compared with the same
pipeline driven by DeepSORT detections.

Caveat on label bias. All metrics depend on a minimal
validation dataset. Also human-drawn bounding boxes that are
inherently subjective for faint, low-contrast contrails. Small
systematic shifts can shift the MOTA by a few points. How-
ever, the visual evidence in Figure 5-which does not rely on
the annotation-still mirrors the numeric gap, reinforcing the
conclusion that Norfair is currently the more reliable tracker
for this dataset.

C. Flight-Attribution Results

The final stage of the pipeline is flight attribution. As
the geometric projection method is best suited for contrails
that have not yet significantly drifted, this analysis focuses
exclusively on persistent tracks that the model classified as
’Short’ or "Thin’. Aged contrails (" Wide’ and ’Contrail-cirrus’)
were excluded from the attribution evaluation, as accurately
linking them would require wind advection modeling, which
is outside the current scope.

Of all eligible (’Short’ and *Thin’) persistent contrail tracks
evaluated from the test set, the pipeline successfully and
uniquely associated 46.2% with a flight ID. Table VII provides
a detailed breakdown of these results.

TABLE VII: Flight-Attribution Results for *Short” and *Thin’
Contrails

Metric Value (% of eligible tracks)
Successful Association Rate 46.2
Unmatched Tracks 53.8




Discussion of Attribution Results. The 46.2% association
rate for the target contrail morphologies is a promising result,
demonstrating the viability of using geometric projection for
attributing young contrails. The remaining 53.8% of unsuc-
cessful associations can be attributed to a combination of
factors inherent to the data, the environment, and the projection
model itself.

While a quantitative breakdown of the error sources is
beyond the scope of this analysis, the primary contributing
factors are known to include:

Projection Inaccuracies: The fidelity of the flight path pro-
jection is a critical dependency. Minor errors in the camera’s
intrinsic or extrinsic calibration, or temporal discrepancies
between the radar track time-stamps and the image time-
stamps, can cause the projected flight path to deviate from
the true contrail location, leading to a failed match.

Data Availability and Environmental Factors: Unsuccess-
ful matches also arise from contrail drifts into the camera’s
view, due to localized wind shear that pushes the contrail
outside the search radius, and contrail mergers that confuse
directional logic. Furthermore, scenarios with multiple proxi-
mate flights can create ambiguity that prevents a unique, high-
confidence attribution.

This analysis shows that even when limiting the scope
to young contrails, data fidelity and flight density remain
significant hurdles. It also validates the decision to exclude
aged contrails, as all these error sources would be greatly
amplified for contrails that have had more time to drift and
diffuse.

VII. CONCLUSION

This thesis addressed the critical gap in ground-based
contrail monitoring by developing and validating an end-to-
end pipeline for automated contrail detection, tracking, and
flight attribution. The research successfully moved beyond
the limitations of prior single-frame analyses by establishing
persistent identities for contrail objects over time and reliably
linking them to their originating aircraft.

The investigation systematically answered its guiding re-
search questions. First, it demonstrated that a fine-tuned De-
tectron2 Mask R-CNN model can achieve high precision in
segmenting four distinct contrail morphologies, providing the
detailed pixel-level data necessary for subsequent analysis. The
successful performance on the test dataset, with a bounding
box mAP of 47.3446% and mask mAP of 22.1740% (for
IoU=.50:.95), establishes a foundation for the pipeline, and
notably, a mask mAP of up to 64.8826% (at loU=.50).

Second, the comparative evaluation of tracking algorithms
revealed that Norfair outperforms DeepSORT for this specific
application. With a higher MOTA (32.5 vs. 11.3) and a more
stable identity metric (IDF1 of 59.2 vs. 45.5), Norfair proved
more adept at handling the 15-second inter-frame interval and
the changing appearance of contrails, which was paramount
for the success of the final attribution stage.

Finally, the study introduced a novel spatiotemporal attri-
bution methodology that integrates Norfair’s tracking output

with projected flight surveillance data. Using movement-based
orientation and a majority vote system, the pipeline achieved
a promising but unique association rate of 46.2%. This result
confirms that continuous tracking is a better approach to
single-frame heuristics, substantially reducing ambiguity in
multi-flight scenarios.

In summary, this work delivers a validated prototype that
transforms raw sky imagery into a structured, flight-resolved
contrail dataset. Contributions, a high-precision segmentation
model, a robust tracking implementation, and a novel attri-
bution algorithm providle MUAC with a powerful tool for
ongoing climate impact assessments and the validation of
contrail mitigation strategies.

VIII. FUTURE WORK AND RECOMMENDATIONS

While this thesis successfully demonstrates a complete
monitoring pipeline, several avenues for future work could
enhance its accuracy, robustness, and operational utility. The
following recommendations are proposed:

1) Incorporate Meteorological Data for Enhanced
Tracking: The current Norfair implementation uses a
standard Kalman filter with a constant velocity model.
To improve predictive accuracy across the 15-second
frame gap, future iterations should integrate real-time
meteorological data. Incorporating wind vector infor-
mation (speed and direction) at various altitudes into
the filter’s state transition model would allow for more
accurate predictions of contrail drift, likely reducing
association errors and improving track stability.

2) Enhance the Detection Model with Advanced Aug-
mentation and Architectures: To mitigate the current
limitations related to heavy cloud cover and sun glare,
the detection model could be retrained on a more
challenging dataset with advanced data augmentation
techniques that simulate these adverse conditions. Fur-
thermore, exploring newer vision architectures, such as
Vision Transformers (ViT), could yield models that are
inherently more robust to occlusions and challenging
lighting due to their global attention mechanisms.

3) Refine the Flight Attribution Logic for Ambiguous
Cases: The current system assigns a track to the flight
with the most votes. In complex scenarios with multiple,
proximate flights or merging contrail tracks, this can
still lead to ambiguity. Future work should develop more
sophisticated logic to handle these cases, potentially by:

« Implementing a “track-splitting” and “merging” ca-
pability.

o Using additional features for association, such as
comparing the contrail’s orientation vector with the
aircraft’s heading vector derived from the radar-
correlated tracks.

o Assigning a confidence score to each attribution
based on factors like proximity, track duration, and
vote margin.

4) Expand the Dataset and Camera Network for Gen-
eralizability: The current models were trained and



validated on data from a single dataset. To ensure the
system is generalizable, it is recommended to expand the
training dataset with imagery from a wider network of
cameras across different geographical locations, seasons,
and times of day. This would create more robust models
that are less sensitive to site-specific conditions.

5) Transition Towards a Real-Time Operational Sys-
tem: The ultimate goal is to use this system for opera-
tional contrail monitoring. This requires optimizing the
entire pipeline for real-time or near-real-time processing.
Efforts should focus on code optimization, exploring
model quantization, and developing a scalable cloud-
based infrastructure for continuous data ingestion, pro-
cessing, and visualization. Integrating this system with
flight planning tools could provide a feedback loop for
validating and refining contrail avoidance strategies.

6) Develop a Convolution-Based Attribution Algorithm:
The current attribution pipeline uses a geometric heuris-
tic based on the proximity of a flight to a single point
on the contrail. While effective, this can be sensitive
to minor projection errors or complex contrail shapes.
A more robust approach, for which preliminary code
has been developed, would be to use an area-based
correlation method. This would involve:

« Creating a composite ”contrail canvas” by ag-
gregating all of a track’s segmentation masks into a
single image representing its total spatial footprint.

« Generating a “flight path canvas” by rendering
the projected 2D flight path as a thick line.

e Quantifying overlap using 2D convolution. The
spatial alignment between the two canvases can be
calculated efficiently using Fast Fourier Transform-
based convolution (‘fftconvolve®). The peak of the
resulting correlation map would indicate the best
alignment.

« Calculating a normalized score. The similarity
score S could be normalized to be independent of
the contrail’s size or duration, using a formula such

. max(C « F)

V2 C- 2 F

where C' is the contrail canvas and F' is the flight
canvas.
Developing and validating this method would likely
improve attribution accuracy, especially in ambiguous
cases, by leveraging the entire shape and orientation of
the contrail rather than a single point.
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